
Modern Fortran: Features
for High-Performance
Computing
Steve Lionel, Convenor, ISO/IEC JTC1/SC22/WG5 Fortran Standards Committee
https://stevelionel.com/drfortran

May 2021

Agenda

▪ Fortran through the ages

▪ A brief introduction to Fortran

▪ Object-oriented features

▪ C Interoperability

▪ Parallelization (DO Concurrent Coarrays)

▪ Future standardization plans

stevelionel.com/drfortran 2

During the presentation…

▪ If you have questions, please use the Zoom Chat window. I will pause at times
and look to see questions that were asked

▪ We will have a break about half-way through

▪ There will be time at the end for general questions

▪ Feel free to email me afterward with questions about any of these topics
(steve@stevelionel.com – also @DoctorFortran on Twitter.

▪ “DF:” indicates related post on my blog, https://stevelionel.com/drfortran

stevelionel.com/drfortran 3

mailto:steve@stevelionel.com
https://twitter.com/DoctorFortran

Fortran through the ages

History of Fortran

▪ 1954 - Specifications for the IBM Mathematical
FORmula TRANSlating System, FORTRAN.

▪ 1956 - The FORTRAN Automatic
Coding System for the IBM 704

stevelionel.com/drfortran 5

ANSI FORTRAN 66

stevelionel.com/drfortran 6

Published March 1966

Presenter Notes
Presentation Notes
The first Fortran standard, often referred to as FORTRAN IV
Six-character variable names
All uppercase

Later Standards

▪ FORTRAN 77 (1978)

▪ Fortran 90 (1991)

▪ Fortran 95 (1997)

▪ Fortran 2003 (2004)

▪ Fortran 2008 (2010)

▪ Fortran 2018 (2018)

stevelionel.com/drfortran 7

Presenter Notes
Presentation Notes
FORTRAN 77 – still six-character names. Still uppercase, 7 dimensions
Fortran 90 – mixed case at last (Fortran 85, 88, 8X), 31-character names, modules, pointer and allocatable variables, derived types. First ISO standard Fortran
Fortran 95 – Minor update with some features from High Performance Fortran (WHERE, FORALL)
Fortran 2003 – Object-oriented, C interoperability, IEEE floating point intrinsic modules
Fortran 2008 – Coarrays, BLOCK, DO CONCURRENT, 15 dimensions
Fortran 2018 – More coarrays, more interop, 31-character names

The Fortran Standard Through the Years

539

480

452

292

274

190

39

0 100 200 300 400 500 600

Fortran 2018

Fortran 2008

Fortran 2003

Fortran 95

Fortran 90

Fortran 77

Fortran 66

Pages

8stevelionel.com/drfortran

Presenter Notes
Presentation Notes
Page counts possibly not directly comparable, as font size and layouts differ, but it gives you a general idea.

How is a new Fortran standard made?

▪ International Fortran committee is ISO/IEC JTC1/SC22/WG5

▪ Experts from individual countries make up National Bodies

▪ WG5 determines general content of the standard

▪ Development of features is done by the US National Body (INCITS PL22.3,
informally “J3”)

▪ All WG5 members vote to approve a “Final Committee Draft”

▪ Fortran 2018 was published November 2018

▪ Next revision working title “Fortran 202X”

9stevelionel.com/drfortran

Presenter Notes
Presentation Notes
JTC=Joint Technical Committee, SC=SubCommittee, WG=Working Group, NB=National Body
Active NBs are Canada, Germany, Japan, UK, US
US NB is INCITS PL22.3, informally “J3”

What the standard does and doesn’t say

▪ The standard describes how a standard-conforming program is interpreted

▪ Compilers can (and do) assign meanings to syntax and relationships not specified
in the standard

▪ Compilers need only have the capability of reporting code that does not meet
numbered syntax rules or constraints

▪ All compilers have extensions – make sure you understand what you are using

▪ Obsolescent and deleted features - avoid if possible

stevelionel.com/drfortran 10

A Brief Introduction to
Fortran

Why Fortran

▪ Modern language features

▪ Compatibility with large body of existing code

▪ Robust array operations

▪ Standard gives compilers flexibility to optimize

▪ Can mix Fortran with other languages (C interoperability)

▪ Built-in parallel features

▪ Choice of implementations

stevelionel.com/drfortran 12

Free-form Source
▪ Free source form introduced in Fortran 90

▪ Source lines may be up to 132 characters long
▪ Statement can start in any column
▪ Continuation indicated by & at the end of a line to be continued – next line may start with & -

required in some cases
▪ Up to 255 continuation lines
▪ Semicolon (;) ends a statement – can have multiple statements on a line separated by ;
▪ Blanks are significant and must appear between adjacent keywords, with some exceptions

allowed (END IF or ENDIF, DOUBLE PRECISION or DOUBLEPRECISION, etc.)
▪ ! Indicates rest of line is a comment
▪ File type .f90 is best to use for free source form (DF: “Source Form Just Wants to be Free”)
▪ Use free source form for all new code!

stevelionel.com/drfortran 13

Presenter Notes
Presentation Notes
Continued character constants
Semicolon not required to end a single statement. No nonblank characters allowed between ; and end-of-line comment

Fixed-form Source
▪ Obsolete – compilers will complain if standards check enabled

▪ 72-character lines

▪ Numeric label field in columns 1-5

▪ Continuation indicator nonblank in column 6

▪ Statement in columns 7-72

▪ Blanks NOT significant (except in character constants)

▪ Semicolon can be used to end/separate statement as in free-form

▪ .f or .for file types typical

▪ DO NOT USE IN NEW CODE!

stevelionel.com/drfortran 14

Program Units

▪ PROGRAM defines the main program

▪ SUBROUTINE or FUNCTION

▪ Internal subroutine or function declared after CONTAINS

▪ MODULEs and SUBMODULEs (DF: We All Live in a Yellow Submodule)

▪ BLOCK DATA (obsolete)

stevelionel.com/drfortran 15

Identifiers

▪ Alphanumeric (Letters (A-Z), Digits (0-9), underscore)
▪ $ is not standard in identifiers, but is a common extension

▪ Must start with a letter

▪ Up to 63 characters long

▪ NOT case-sensitive
▪ VARNAME, varname, VarName all the same

▪ Keywords are also not case-sensitive

▪ No reserved words (DF: No Reserve)

stevelionel.com/drfortran 16

Types
▪ Intrinsic types INTEGER, REAL, COMPLEX, LOGICAL, CHARACTER

▪ KIND numbers distinguish variants of an intrinsic type. Example: INTEGER(4) or
INTEGER(KIND=4)
▪ KIND numbers are implementation-dependent, not always tied to storage size
▪ COMPLEX kinds are the same as the component REAL kinds

▪ SELECTED_INT_KIND, SELECTED_REAL_KIND, SELECTED_CHAR_KIND
intrinsic functions to specify kind that meets precision, range and/or character set
requirements

▪ CHARACTER types have fixed lengths (except deferred-length allocatable)

▪ DF: It Takes All KINDs

stevelionel.com/drfortran 17

Presenter Notes
Presentation Notes
INTEGER*4 syntax non-standard!

Derived Types

▪ User-defined types

▪ TYPE mytype; component-list; END TYPE mytype

▪ Components can be intrinsic or derived types

▪ % separates components in a reference (A%B%C)

▪ No unions

stevelionel.com/drfortran 18

Constants and Operators
▪ Intrinsic type constants can have optional kind (3.1415926535897_8, 42_4)

▪ Kind specifier can be named constant (3.1416026535897_DP)

▪ Array constructors: [1,2,3,4]

▪ Structure constructors: mytype(3,’ABC’,.TRUE.)

▪ Exponentiation is **

▪ Comparison: <, >, <=, >=, ==, /= (older: .LT., .GT., .LE., .GE., .EQ., .NE.)

▪ Logical: .AND., .OR., .NOT., .EQV., .NEQV. (DF: It’s Only LOGICAL)

▪ User-defined: Example: .DOT_PRODUCT.

▪ DF: Order! Order!

stevelionel.com/drfortran 19

Arrays
▪ Array types

▪ Explicit-shape – REAL :: X(10)

▪ Adjustable – REAL :: X(J), where J is a dummy argument/COMMON/MODULE variable
▪ Assumed-size – REAL :: X(*)

▪ Assumed-shape – REAL :: X(:), where X is dummy argument
▪ Deferred-shape – REAL :: X(:), where X is allocatable or pointer
▪ Implied-shape – REAL, PARAMETER :: X(*) = [1,2,3]

▪ Assumed-rank – REAL :: X(..), where X is dummy argument

▪ Maximum of 15 dimensions

▪ Default lower bound is 1, can be changed (REAL :: X(0:8))

stevelionel.com/drfortran 20

Arrays

▪ Whole-array assignment - A = B

▪ Array operations – A = B + C

▪ Array sections - A(1:100:2)

▪ Vector subscripts – A([2,5,4,7])

▪ Intrinsics operate on arrays - (MAXLOC, IALL, MATMUL, DOT_PRODUCT, many
more)

▪ Elemental functions operate on scalars or arrays (or write your own!)

stevelionel.com/drfortran 21

Control Flow
▪ DO

▪ Counted DO: label: DO I=1,10 .. END DO
▪ Tested DO: DO WHILE (T > 0) .. END DO
▪ Infinite DO: DO .. END DO
▪ Parallel allowed DO: DO CONCURRENT ((I=1:10, J=1:10, A(I) > 0.0 .AND. B(J) < 1.0)
▪ Skip to next iteration: CYCLE [label]
▪ Leave this loop (or construct): EXIT [label]

▪ Obsolete and Deleted forms
▪ DO 10 I=1,10 .. 10 CONTINUE
▪ DO 10 I=1,10 .. 10 J = J + I
▪ DF: Hey! Who are you calling Obsolescent?

stevelionel.com/drfortran 22

Presenter Notes
Presentation Notes
For counted DO, number of iterations calculated before loop starts – no modifying index variable!
No post-tested DO – use EXIT with a test
Labels

Control Flow
▪ IF (expression) statement

▪ IF (expression)
THEN

statements
[ELSE

statements]
END IF

▪ SELECT CASE (N)
CASE (:-1)
SIGNUM = -1

CASE (0)
SIGNUM = 0

CASE (1:)
SIGNUM = 1

CASE DEFAULT
ERROR STOP

END SELECT

stevelionel.com/drfortran 23

Modules

▪ Separately compiled collection of declarations and/or procedures

▪ Example:
module mymod
integer, parameter :: widget = 23
type things

integer :: thing_id
end type things
contains
function get_thing (thing_code)
…
end function get_thing
end module mymod

stevelionel.com/drfortran 24

Presenter Notes
Presentation Notes
Constants, variables, types, interfaces

Submodules

▪ Separate interface from implementation

▪ Reduce or eliminate “compilation cascade”

▪ DF: We All Live in a Yellow Submodule

stevelionel.com/drfortran 25

Explicit Interface

▪ Before Fortran 90, all procedure interfaces were implicit

▪ Explicit interface declares characteristics of procedure

▪ Explicit interface automatic for module procedures and internal procedures

▪ INTERFACE block can be used to create an explicit interface

▪ Some types of procedures require an explicit interface to be visible

▪ IMPLICIT NONE (EXTERNAL) forces you to explicitly declare all procedures

▪ DF: Doctor Fortran Gets Explicit (and Doctor Fortran Gets Explicit – Again!)

stevelionel.com/drfortran 26

Pointer and Allocatable

▪ POINTER
▪ Contains shape and dynamic type information

▪ Reference to pointer is to its data, except in pointer assignment (and when passing a
pointer to another pointer)

▪ Can pointer-assign to anything with the TARGET attribute

▪ Can be discontiguous array (stride other than 1)

▪ No garbage collection – programmer responsible for avoiding leaks

▪ Assumption that pointer objects can be aliased

stevelionel.com/drfortran 27

Pointer and Allocatable

▪ ALLOCATABLE
▪ Contains shape and dynamic type information

▪ Always contiguous

▪ Never aliased

▪ Compiler ensures no leaks

▪ Intrinsic assignment automatically reallocates if needed

▪ Deferred-length allocatable character serves as varying length strings
▪ CHARACTER(:), ALLOCATABLE :: STR
STR = 'ABCDE' ! STR is length 5
STR = 'FGHIJKL' ! STR is now length 7

stevelionel.com/drfortran 28

Input/Output

▪ ACCESS
▪ SEQUENTIAL – sequence of records that can be variable length

▪ DIRECT – fixed-length records randomly accessed by record number

▪ STREAM – C-like sequence of bytes, can be repositioned

▪ FORM
▪ FORMATTED – text representation

▪ UNFORMATTED – binary representation

▪ Internal I/O
▪ READ from, WRITE to CHARACTER variables

stevelionel.com/drfortran 29

Object-Oriented Features

Type Extension

▪ Create a new type by extending an existing derived type

▪ Most derived types can be extended

▪ Type that is extended is the parent type

▪ Extended type inherits all its parent’s components

▪ The parent type is itself a component of the extended type

▪ DF: Not My TYPE

stevelionel.com/drfortran 31

Presenter Notes
Presentation Notes
BIND and SEQUENCE types cannot be extended
“parent component”

Type Extension Example
type :: parent

integer :: p1
end type parent
type, extends(parent) :: child

real :: c2
end type child
type(child) :: kid

Available components: kid%c2, kid%p1, kid%parent, kid%parent%p1

stevelionel.com/drfortran 32

Polymorphism
▪ Polymorphic variables have a declared type and a dynamic type

▪ CLASS(parent), POINTER :: p can point to an object of type parent or any of
its extensions

▪ Allocatable polymorphic variables can have their dynamic type specified in the
ALLOCATE statement: ALLOCATE (child::p)

▪ A polymorphic variable is type-compatible with an object of the same declared
type or any of its extensions

▪ CLASS(*) means unlimited polymorphic – everything is type-compatible with it,
but it has no declared type

▪ SELECT TYPE construct to choose based on dynamic type

stevelionel.com/drfortran 33

Type-bound Procedures
MODULE MYMOD
TYPE POINT
REAL :: X, Y
CONTAINS
PROCEDURE, PASS :: RADIUS => POINT_RADIUS
END TYPE POINT

CONTAINS

FUNCTION POINT_RADIUS (THIS)
REAL :: POINT_RADIUS
CLASS(POINT), INTENT(IN) :: THIS
POINT_RADIUS = SQRT((THIS%X)**2 + (THIS%Y)**2)
END FUNCTION POINT_RADIUS
END MODULE MYMOD

PROGRAM TEST
USE MYMOD
TYPE(POINT) :: P
P = POINT (2.0,3.0)
PRINT *, P%RADIUS()
END PROGRAM TEST

stevelionel.com/drfortran 34

C Interoperability

C Interoperability

▪ Standard features to call C (or C-like languages) from Fortran, and to call Fortran
from C

▪ Standard features to share data between Fortran and C

▪ Definitions and restrictions to ensure common interpretation

▪ Standard talks about "companion C processor"

▪ Handles naming, data types and layout, argument passing

▪ DF: I Can C Clearly Now

stevelionel.com/drfortran 36

Interoperable Types

▪ Intrinsic types of kinds with supported equivalents in C

▪ Intrinsic module ISO_C_BINDING defines named constants for various C kinds
(C_INT, C_FLOAT, C_SIZE_T, C_CHAR, C_LONG_LONG, etc.)

▪ If there is no equivalent kind, value of constant is -1

▪ Derived types with BIND(C) attribute are interoperable
▪ All components must be interoperable

▪ No pointer, allocatable or coarray components

▪ Layout in memory matches that of companion C processor

stevelionel.com/drfortran 37

Interoperable Procedures

▪ Procedure declared with BIND(C) attribute in explicit interface

▪ Optional NAME= specifies case-sensitive name

▪ Name "decoration" done as the C processor would

▪ All dummy arguments must be interoperable

▪ Fortran procedures can also be interoperable

▪ C strings interoperable with array of single characters

stevelionel.com/drfortran 38

Fortran 2018 Enhancements

▪ In Fortran 2003 and 2008, these kinds of dummy
arguments were not interoperable:
▪ Assumed-shape arrays
▪ Assumed-size arrays
▪ Character length other than 1
▪ Allocatable or pointer variables

▪ In Fortran 2018, all of these are now interoperable when a “C
Descriptor” is passed

39stevelionel.com/drfortran

C Descriptor

▪ A C descriptor includes:
▪ Attribute code (POINTER, ALLOCATABLE, OTHER)
▪ Data type
▪ Base address
▪ Element length
▪ Rank
▪ Bounds and extents

40stevelionel.com/drfortran

Presenter Notes
Presentation Notes
The standard specifies the order of some of these, but not all. C descriptors are not interchangeable between different Fortran compilers.

C Descriptors

▪ Fortran creates and passes C descriptors to routines declared as BIND(C)

▪ C code can operate on C descriptors with CFI_xxx functions

▪ C code can create C descriptors and pass to Fortran
▪ Fortran procedure must have BIND(C) attribute

▪ Descriptor layout, constants, functions declared in
ISO_Fortran_binding.h supplied with each Fortran compiler
▪ C descriptors not interoperable with other Fortran compilers

▪ Be careful about CHARACTER(*) dummy arguments – passed by C
descriptor!

41stevelionel.com/drfortran

42

#include "ISO_Fortran_binding.h"
#include <memory.h>
#include <stdio.h>

extern "C" void greetings(CFI_cdesc_t * descr);

int main()
{

int status;
CFI_CDESC_T(0) cdesc;

// Create our own local descriptor for an allocatable string
status = CFI_establish((CFI_cdesc_t *)&cdesc, NULL,

CFI_attribute_allocatable,
CFI_type_char, 1, 0, NULL);

//Allocate the string to length 7
status = CFI_allocate((CFI_cdesc_t *)&cdesc, NULL, NULL, 7);
// Copy in 'Hello, '
memcpy(cdesc.base_addr, "Hello, ", 7);
// Call Fortran to append to the string and print it
greetings((CFI_cdesc_t *)&cdesc);
printf("Length is now %zd\n", cdesc.elem_len);
status = CFI_deallocate((CFI_cdesc_t *)&cdesc);

}
stevelionel.com/drfortran

Presenter Notes
Presentation Notes
Establish: desc, baseaddr, attr, dtype, elemlen, rank, extents
Allocate: desc, lower, upper, elemlen

43

subroutine greetings (string) bind(C)
implicit none
character(:), allocatable :: string

string = string // 'World!'
print *, string
print *, ‘Length is now’, len(string)
end subroutine greetings

Hello, World!
Length is now 13

stevelionel.com/drfortran

Assumed Type

▪ Syntax is TYPE(*)

▪ Unlimited polymorphic - has no declared type

▪ May be used only for dummy arguments
▪ Like C void

▪ Limited use in Fortran code

44stevelionel.com/drfortran

Presenter Notes
Presentation Notes
Does not match any other type, including CLASS(*)

Allocatable Dummy Arguments

▪ ALLOCATABLE, INTENT(OUT) dummy arguments get
deallocated on entry to a Fortran procedure

▪ In Fortran 2018, a BIND(C) procedure can now have
such an argument

▪ Fortran processor is required to do the deallocation on the
call

45stevelionel.com/drfortran

Presenter Notes
Presentation Notes
This means that if the called routine is Fortran, the test for deallocation is done twice.

More F2018 Interoperability Changes

▪ A Fortran procedure with a CONTIGUOUS dummy argument
must be able to handle a C descriptor for a non-
contiguous array

▪ Interoperable procedures may now have OPTIONAL
dummy arguments

▪ ASYNCHRONOUS attribute extended to data access other
than input/output

46stevelionel.com/drfortran

Presenter Notes
Presentation Notes
ASYNCHRONOUS change put in for MPI non-blocking calls

Assumed Rank

▪ Syntax is DIMENSION(..)

▪ May be used only for dummy arguments
▪ New SELECT RANK construct for use in Fortran code
▪ RANK(n)
▪ RANK(*) for assumed-size array
▪ RANK DEFAULT

47stevelionel.com/drfortran

Presenter Notes
Presentation Notes
Think of .. as a colon on its side

DO CONCURRENT

DO CONCURRENT

▪ Replaces FORALL from Fortran 95

▪ Allows for parallelization, does not require it

▪ DO CONCURRENT concurrent-header concurrent-locality
block
END DO

▪ concurrent-header: ([type-spec::] control-list [, scalar-mask-expr])

▪ control-list: index-name = limit : limit [: step]

▪ Example: DO CONCURRENT (I=1:10, J=1:10, A(I) > 0.0 .AND. B(J) < 1.0)

stevelionel.com/drfortran 49

DO CONCURRENT Locality Specifications

▪ Tells the compiler which variables are local to each iteration

▪ If a variable is not named, compiler can try to figure it out

▪ Choices:
▪ LOCAL (variable-name-list)

▪ LOCAL_INIT (variable-name-list)

▪ SHARED (variable-name-list)

▪ DEFAULT (NONE)

stevelionel.com/drfortran 50

Presenter Notes
Presentation Notes
LOCAL = construct entity initially undefined at the start of an iteration
LOCAL_INIT = construct entity whose value at the start of an iteration is taken from the outside variable
SHARED = variable that exists in the scope containing the DO
DEFAULT(NONE) forces explicit locality specification for each variable

DO CONCURRENT Locality Example
real :: a(:), b(:), x
…
do concurrent (i=1:size(a)) local (x) shared (a,b)

if (a(i) > 0) then
x = sqrt(a(i))
a(i) = a(i) – x**2

end if
b(i) = b(i) – a(i)

end do
…
Example from Modern Fortran Explained, 8th Edition

stevelionel.com/drfortran 51

Coarrays

stevelionel.com/drfortran 52

Summary of coarray model
▪ SPMD - Single Program, Multiple Data

▪ Replicated to a number of images (probably as executables)

▪ Number of images fixed during execution

▪ Each image has its own set of variables

▪ Coarrays are like ordinary variables but have second set of subscripts [] for access
between images

▪ Images mostly execute asynchronously

▪ Synchronization: sync all, sync images, lock, unlock, critical
construct, allocate, deallocate

▪ Intrinsics: this_image, num_images, image_index

53stevelionel.com/drfortran

Examples of coarray syntax
real,save :: r[*], s[0:*] ! Scalar coarrays
real,save :: x(n)[*] ! Array coarray
type(u),save :: u2(m,n)[np,*]
! Coarrays always have assumed cosize
! (equal to number of images)
real :: t ! Local variable
integer p, q, index(n) ! Local variables

:
t = s[p]
x(:) = x(:)[p]
! Reference without [] is to local object
x(:)[p] = x(:)
u2(i,j)%b(:) = u2(i,j)[p,q]%b(:)

54stevelionel.com/drfortran

Implementation model

▪ Usually, each image resides on one core.

▪ However, several images may share a core (e.g. for debugging) and one image
may execute on a node (e.g. with OpenMP).

▪ A coarray has the same set of bounds on all images, so the compiler may arrange
that it occupies the same set of addresses within each image (known as
symmetric memory).

▪ This allows each image to calculate the memory address of an element on
another image.

55stevelionel.com/drfortran

Synchronization
▪ The images execute asynchronously. If syncs are needed, the user supplies them

explicitly.

▪ Barrier on all images
▪ sync all

▪ Wait for others
▪ sync images (image-set)

▪ Limit execution to one image at a time
▪ critical

block
end critical

▪ These are known as image control statements

56stevelionel.com/drfortran

Execution segments

▪ On an image, the statements executed up to the first
image control statement or after one and up to the next is
known as a segment.

▪ For example, this code reads a value on image 1 and
broadcasts it.
: ! Segment 1

sync all ! Segment 1
if(this_image()==1)then ! Segment 2

read (*,*) p ! :
do i = 2, num_images()! :

p[i] = p ! :
end do ! :

end if ! :
sync all ! Segment 2

: ! Segment 3
57stevelionel.com/drfortran

Execution segments (cont)

▪ The normal rules of statement execution on a single image and the
synchronization statements together ensure a partial ordering of all the segments.

▪ Important rule: if a variable is defined in a segment, it must not be referenced,
defined, or become undefined in a another segment unless the segments are
ordered.

▪ It is up to the programmer to ensure this.

58stevelionel.com/drfortran

Dynamic coarrays

▪ Only dynamic form: the allocatable coarray.

▪ real, allocatable :: a(:)[:], s[:,:]
:

allocate (a(n)[*], s[-1:p,0:*])

▪ The bounds, cobounds, and length parameters must not vary between images.

▪ All images synchronize at an allocate or deallocate statement so that they
can all perform their allocations and deallocations in the same order (for
symmetric memory).

59stevelionel.com/drfortran

Coarray dummy arguments

▪ A dummy argument may be a coarray. It may be of explicit shape, assumed size,
assumed shape, or allocatable.

▪ subroutine subr(n,w,x,y,z)
integer :: n
real :: w(n)[n,*] ! Explicit shape
real :: x(n,*)[*] ! Assumed size
real :: y(:,:)[*] ! Assumed shape
real, allocatable :: z(:)[:,:]

▪ There are rules to ensure that copy-in copy-out of a coarray is never needed.

60stevelionel.com/drfortran

Structure components

▪ A coarray may be of a derived type with allocatable or pointer components.

▪ Provides a simple but powerful mechanism for cases where the size varies from
image to image, avoiding loss of optimization.

▪ Pointers must have targets in their own image:

▪ q => z[i]%p ! Not allowed

▪ allocate(z[i]%p) ! Not allowed

61stevelionel.com/drfortran

Teams

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

stevelionel.com/drfortran 62

In Fortran 2008, program images were uniformly numbered starting at 1

Teams

1 2 3 4 1 2 3 4

5 6 7 1 2 3 5 6

8 9 10 4 5 6 7 8

11 12 13 7 8 30 31 32

stevelionel.com/drfortran 63

Teams allow splitting images into groups

SKY SEA
LAND

SPARE

Presenter Notes
Presentation Notes
Create teams with FORM TEAM, begin execution in new team with CHANGE TEAM
Easier creation of libraries since each team numbers images starting at 1

Teams
▪ Needed for independent computations on subsets of images.

▪ Code that has been written and tested on whole machine should run on a team.

▪ Therefore, image indices need to be relative to the team.

▪ Collective activities, including syncs and allocations, need to be relative to the team.

64stevelionel.com/drfortran

team_type and form team

▪ The intrinsic module iso_fortran_env contains a derived type team_type. A
scalar object of this type identifies a team of images.

▪ The same form team statement must be executed on all images of a team to
form subteams

▪ form team(number,new_team)

▪ Images with the same value of number form a new team.

▪ All images of the current team synchronize.

65stevelionel.com/drfortran

change team construct

change team (team,local[*]=>coarray)
! Block executed as a team
if(team_number()==1) then ! New intrinsic

: ! Code for team 1
else

:
end team

▪ Associating local with coarray allows corank and cobounds to change. Other
attributes are unchanged.

▪ The new teams synchronize at change team and end team.

▪ Changing teams is likely to be costly – avoid doing it often.

66stevelionel.com/drfortran

Accessing another team

real, save :: a(n)[*]
type(team_type) :: initial, block
initial = get_team() ! New intrinsic
i = ...
form team(i,block)
change team (block)

:
sync team(initial) ! New statement
a(k) = a(1)[me+1,team=initial]

end team

67stevelionel.com/drfortran

Collectives
▪ The collective subroutines are:

▪ co_broadcast, co_max, co_min, co_sum, co_reduce.

▪ Invoked by the same statement on all images of the team and involve
synchronization within them, but not necessarily at start and end.

▪ The main argument is not required to be a coarray.

68stevelionel.com/drfortran

CO_REDUCE Example

SUBROUTINE co_all(boolean)
LOGICAL, INTENT(INOUT) :: Boolean
CALL CO_REDUCE(boolean,both)

CONTAINS

PURE FUNCTION both(lhs,rhs) RESULT(lhs_and_rhs)
LOGICAL, INTENT(IN) :: lhs,rhs
LOGICAL :: lhs_and_rhs
lhs_and_rhs = lhs .AND. rhs
END FUNCTION both

END SUBROUTINE co_all

stevelionel.com/drfortran 69

Events

▪ Events are useful if one or more images need to do something before another
image can continue.

▪ For example, in the multifrontal method for factorizing a sparse matrix, work at a
node of the assembly tree has to wait for all the work at its child nodes to be
completed.

70stevelionel.com/drfortran

Events

▪ An event variable is a scalar coarray of type event_type. It contains a count
which increases by one each time the event is “posted”.

use iso_fortran_env
type(event_type), save :: event[*]
:

event post(event[i]) ! Atomic
:

if(this_image()==i) then
event wait(event)
! Waits until count >= 1, then atomically
! decreases it by 1 and continues

71stevelionel.com/drfortran

Events Example (outline)
PROGRAM TREE
USE, INTRINSIC :: ISO_FORTRAN_ENV
INTEGER, ALLOCATABLE :: NODE (:) ! Tree nodes that this image handles.
INTEGER, ALLOCATABLE :: NC (:) ! NODE(I) has NC(I) children.
INTEGER, ALLOCATABLE :: PARENT (:), SUB (:)
! The parent of NODE (I) is NODE (SUB (I)) [PARENT (I)].

TYPE (EVENT_TYPE), ALLOCATABLE :: DONE (:) [:]
INTEGER :: I, J, STATUS
! Set up the tree, including allocation of all arrays.

DO I = 1, SIZE (NODE)
! Wait for children to complete
IF (NC (I) > 0) THEN
EVENT WAIT (DONE (I), UNTIL_COUNT=NC (I), STAT=STATUS)
IF (STATUS/=0) EXIT

END IF

! Process node, using data from children.
IF (PARENT (I)>0) THEN
! Node is not the root.
! Place result on image PARENT (I) for node NODE (SUB) [PARENT (I)]
! Tell PARENT (I) that this has been done.
EVENT POST (DONE (SUB (I)) [PARENT (I)], STAT=STATUS)
IF (STATUS/=0) EXIT

END IF
END DO
END PROGRAM TREE

stevelionel.com/drfortran 72

failed_images intrinsic function
▪ failed_images()

▪ Returns an integer array holding image indices of known failed images in the current
team.

▪ failed_images(team)
▪ Returns an integer array holding image indices of known failed images in team.

73stevelionel.com/drfortran

Testing for failed images in image control
statements

parent = get_team()
change team (team_a)

:
sync_all(parent,stat=st)
if (st==stat_failed_image) exit

end team
sync all(stat=st)
if (st==stat_failed_image) then

: Deal with failure
end if

74stevelionel.com/drfortran

Testing for failed image in a remote reference
use iso_fortran_env

:
a = b[image,stat=st]
if (st==stat_failed_image) then

: Deal with failure
end if

75stevelionel.com/drfortran

Advantages of coarrays

▪ References to local data are obvious as such.

▪ Easy to maintain code - more concise than MPI and easy to see what is
happening

▪ Integrated with Fortran - type checking, type conversion on assignment, ...

▪ The compiler can optimize communication

▪ Local optimizations still available

▪ Does not make severe demands on the compiler, e.g. for coherency.

76stevelionel.com/drfortran

Coarray Example
! This program demonstrates using Fortran coarrays to implement the classic
! method of computing the mathematical value pi using a Monte Carlo technique.
! A good explanation of this method can be found at:
! http://www.mathcs.emory.edu/~cheung/Courses/170/Syllabus/07/compute-pi.html
program mcpi
implicit none

! Declare kind values for large integers, single and double precision
integer, parameter :: K_BIGINT = selected_int_kind(15)
integer, parameter :: K_DOUBLE = selected_real_kind(15,300)

! Number of trials per image. The bigger this is, the better the result
! This value must be evenly divisible by the number of images.
integer(K_BIGINT), parameter :: num_trials = 1200000000_K_BIGINT

! Actual value of PI to 18 digits for comparison
real(K_DOUBLE), parameter :: actual_pi = 3.141592653589793238_K_DOUBLE

! Declare scalar coarray that will exist on each image
integer(K_BIGINT) :: total[*] ! Per-image subtotal

! Local variables
real(K_DOUBLE) :: x,y
real(K_DOUBLE) :: computed_pi
integer :: I
integer(K_BIGINT) :: bigi
integer(K_BIGINT) :: clock_start,clock_end,clock_rate

stevelionel.com/drfortran 77

http://www.mathcs.emory.edu/%7Echeung/Courses/170/Syllabus/07/compute-pi.html

Coarray Example (page 2)
! Image 1 initialization
if (THIS_IMAGE() == 1) then

! Make sure that num_trials is divisible by the number of images
if (MOD(num_trials,INT(NUM_IMAGES(),K_BIGINT)) /= 0_K_BIGINT) &

error stop "Number of trials not evenly divisible by number of images!"
print '(A,I0,A,I0,A)', "Computing pi using ",num_trials, &

" trials across ",NUM_IMAGES()," images"
call SYSTEM_CLOCK(clock_start)

end if

! Set the initial random number seed to an unpredictable value, with a different
! sequence on each image.
call RANDOM_INIT (REPEATABLE=.FALSE.,IMAGE_DISTINCT=.TRUE.)

! Initialize our subtotal
total = 0_K_BIGINT

! Run the trials, with each image doing its share of the trials.
!
! Get a random X and Y and see if the position
! is within a circle of radius 1. If it is, add one to the subtotal
do bigi=1_K_BIGINT,num_trials/int(NUM_IMAGES(),K_BIGINT)

call RANDOM_NUMBER(x); call RANDOM_NUMBER(y)
if ((x*x)+(y*y) <= 1.0_K_DOUBLE) total = total + 1_K_BIGINT

end do

print *, "Image ", this_image(), " found ", total, " values"

stevelionel.com/drfortran 78

Coarray Example (page 3)
! Wait for everyone
sync all

! Image 1 end processing
if (this_image() == 1) then

! Sum all of the images' subtotals
do i=2,num_images()

total = total + total[i]
end do

! total/num_trials is an approximation of pi/4
computed_pi = 4.0_K_DOUBLE*(REAL(total,K_DOUBLE)/REAL(num_trials,K_DOUBLE))
print '(A,G0.8,A,G0.3)', "Computed value of pi is ", computed_pi, &

", Relative Error: ",ABS((computed_pi-actual_pi)/actual_pi)

! Show elapsed time
call SYSTEM_CLOCK(clock_end,clock_rate)
print '(A,G0.3,A)', "Elapsed time is ", &

REAL(clock_end-clock_start)/REAL(clock_rate)," seconds“
end if

end program mcpi

stevelionel.com/drfortran 79

Running the coarray example
Computing pi using 1200000000 trials across 12 images
Image 8 found 78545883 values
Image 11 found 78539293 values
Image 7 found 78538166 values
Image 6 found 78533956 values
Image 10 found 78541985 values
Image 12 found 78551690 values
Image 5 found 78536524 values
Image 9 found 78538020 values
Image 3 found 78541247 values
Image 4 found 78539400 values
Image 2 found 78535164 values
Image 1 found 78534353 values

Computed value of pi is 3.1415856, Relative Error: .224E-05

Elapsed time is 4.31 seconds

stevelionel.com/drfortran 80

Fortran 202X

Future Revisions

▪ Next revision is informally called Fortran 202X

▪ Goal is to have it published no later than 2023

▪ Six-month survey of users 2017-2018
▪ Results in WG5 document N2147

▪ After that, Fortran 202Y

82stevelionel.com/drfortran

Presenter Notes
Presentation Notes
Technical work done by end of 2021, if the pandemic doesn’t get more in the way
202Y to follow 3-5 years later.
Work list is frozen by WG5, about 75% of features fully specified

Fortran 202X Features

▪ Add optional argument to C_F_POINTER to specify lower bounds (19-238r1)

▪ Longer source lines and statement length (19-138r1)
▪ Require reporting of ignored characters after line length limit, if any (19-149r1)

▪ Trigonometric functions in degrees (SIND, COSD, etc.) (19-203r1)

▪ Trigonometric functions scaled by π (SINPI, COSPI, etc.) (19-204r1)

▪ SELECTED_LOGICAL_KIND intrinsic (19-147r1)

▪ LOGICALnn constants in ISO_FORTRAN_ENV (19-139r1)

(nn-nnn refers to papers at https://j3-fortran.org/)

stevelionel.com/drfortran 83

Presenter Notes
Presentation Notes
Line length not less than 10,000 characters and statement length not less than 1,000,000 characters, continuation limit removed

Fortran 202X Features Continued

▪ SPLIT function splits strings into tokens based on separators (19-254r1)

▪ C_F_STRPOINTER and F_C_STRING for help with C strings (19-197r3)

▪ AT format specifier for trimming strings (19-137r2)

▪ Format control over leading zeros for reals (19-156r1)

▪ Allow arrays of derived type with coarray components (19-250r1)

▪ Put with notify for coarrays (19-259r1)

▪ Automatically allocate deferred-length character in internal WRITE and
IOMSG/ERRMSG (19-252r2)

stevelionel.com/drfortran 84

Presenter Notes
Presentation Notes
SPLIT is a remnant of the deleted ISO_VARYING_STRINGS part of the older standards
LZS, LZP, LZ edit descriptors, LEADING_ZERO= specifier in OPEN
Currently, a variable of a type with a coarray component must be a scalar – requested by many generic/OO programmers
Put with notify lets you alert another image that you sent it data, more efficient than using events

Fortran 202X Features Continued

▪ Reduction specifier in DO CONCURRENT (19-255r2)

▪ Allow BOZ constants in more places (19-256r2)

▪ SIMPLE procedures are PURE with more restrictions (19-201r1)

▪ TYPEOF, CLASSOF intrinsics to help with generic programming (19-142r1)

▪ Rank-agnostic allocation and pointer assignment (20-120r1)

▪ BOUNDS() and RANK() specifiers for DIMENSION attribute (19-202r2)

▪ Rank-agnostic array notation (20-144r2)

stevelionel.com/drfortran 85

Presenter Notes
Presentation Notes
BOZ initializer for REAL and INTEGER named constants, BOZ in assignment, in array constructor values and in formatted WRITE statements
SIMPLE cannot reference or define any variable not in its dummy argument list (or local variables)
Rank-agnostic allows a rank-1 array to give the shape for allocation and for remapping in pointer assignment
BOUNDS/RANK let you declare a variable based on bounds/rank of another

Approved F202X Features not yet finished

▪ Protected components (20-106)

▪ Typed enumerators (19-249r1)

▪ Conditional expressions

▪ Short-circuit logical operators (18-239)

▪ Variant of INTENT that applies to a pointer target (18-144r1)

stevelionel.com/drfortran 86

Presenter Notes
Presentation Notes
A protected component is read-only

More Information

▪ WG5 web site https://wg5-fortran.org
▪ Documents > N2161 The New Features of Fortran 2018
▪ Fortran Standards > Fortran 2018

▪ J3 (PL22.3) web site https://j3-fortran.org
▪ Repository for papers related to technical content of the standard
▪ 18-007r1 is the committee reference for Fortran 2018

▪ Doctor Fortran blog https://stevelionel.com/drfortran
▪ Ideas for future revisions https://github.com/j3-fortran/fortran_proposals
▪ Fortran Discourse https://fortran-lang.discourse.group/

87stevelionel.com/drfortran

https://wg5-fortran.org/
https://j3-fortran.org/
https://stevelionel.com/drfortran
https://github.com/j3-fortran/fortran_proposals
https://fortran-lang.discourse.group/

Questions?

▪ Use Raise Hand feature or ask in the Chat window

stevelionel.com/drfortran 88

	Modern Fortran: Features for High-Performance Computing
	Agenda
	During the presentation…
	Fortran through the ages
	History of Fortran
	ANSI FORTRAN 66
	Later Standards
	The Fortran Standard Through the Years
	How is a new Fortran standard made?
	What the standard does and doesn’t say
	A Brief Introduction to Fortran
	Why Fortran
	Free-form Source
	Fixed-form Source
	Program Units
	Identifiers
	Types
	Derived Types
	Constants and Operators
	Arrays
	Arrays
	Control Flow
	Control Flow
	Modules
	Submodules
	Explicit Interface
	Pointer and Allocatable
	Pointer and Allocatable
	Input/Output
	Object-Oriented Features
	Type Extension
	Type Extension Example
	Polymorphism
	Type-bound Procedures
	C Interoperability
	C Interoperability
	Interoperable Types
	Interoperable Procedures
	Fortran 2018 Enhancements
	C Descriptor
	C Descriptors�
	Slide Number 42
	Slide Number 43
	Assumed Type�
	Allocatable Dummy Arguments�
	More F2018 Interoperability Changes�
	Assumed Rank�
	DO CONCURRENT
	DO CONCURRENT
	DO CONCURRENT Locality Specifications
	DO CONCURRENT Locality Example
	Coarrays
	Summary of coarray model
	Examples of coarray syntax
	Implementation model
	Synchronization
	Execution segments
	Execution segments (cont)
	Dynamic coarrays
	Coarray dummy arguments
	Structure components
	Teams�
	Teams�
	Teams
	team_type and form team
	change team construct
	Accessing another team
	Collectives
	CO_REDUCE Example
	Events
	Events
	Events Example (outline)
	failed_images intrinsic function
	Testing for failed images in image control statements
	Testing for failed image in a remote reference
	Advantages of coarrays
	Coarray Example
	Coarray Example (page 2)
	Coarray Example (page 3)
	Running the coarray example
	Fortran 202X
	Future Revisions�
	Fortran 202X Features
	Fortran 202X Features Continued�
	Fortran 202X Features Continued�
	Approved F202X Features not yet finished�
	More Information�
	Questions?

